Command Palette

Search for a command to run...

Information and Communication TechnologytheorySem 3

MACHINE LEARNING

ICT 4402

Syllabus

  • 01Introduction to Machine Learning
  • 02Mathematical Preliminaries
  • 03Supervised Learning-LMS
  • 04logistic regression
  • 05GDA
  • 06Naive Bayes
  • 07SVM
  • 08model selection
  • 09Learning theory-bias/variance tradeoff
  • 10union and Chernoff bounds
  • 11VC dimensions
  • 12Unsupervised learning-clustering
  • 13k-means
  • 14Gaussian mixture
  • 15factor analysis
  • 16PCA
  • 17ICA
  • 18Reinforcement learning-MDPs
  • 19Bellman equations
  • 20value and policy iteration
  • 21LQR
  • 22LQG
  • 23Q-learning
  • 24policy search
  • 25POMDPs
  • 26Explainability

References

  • Kevin P Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.
  • Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar, Foundations of Machine Learning, MIT Press, 2012.
  • Daphne Koller and Nir Friedman, Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009.
  • Christopher M.Bishop, Pattern Recognition and Machine Learning (2e), Springer, 2013.
  • Richard S.Sutton and Andrew G.Barto, Reinforcement Learning, 2nd Edition, MIT Press, 2018
  • Solon Barocas, Moritz Hardt and Arvind Narayanan, Fairness and Machine Learning, failml.org, 2021
Credits Structure
3Lecture
0Tutorial
0Practical
3Total