Command Palette

Search for a command to run...

BTECH IN ELECTRONICS AND COMMUNICATION ENGINEERINGelectivetheory

MACHINE LEARNING

ECE 4409

Syllabus

  • 01Machine learning basics
  • 02Naïve Bayesian Model
  • 03Non-Parametric Techniques: Density Estimation
  • 04Parzen Windows
  • 05k- Nearest-Neighbor Estimation
  • 06K- nearest neighbor classification
  • 07Radial Basis Function Network
  • 08Learning Vector Quantization
  • 09Clustering
  • 10K-Means clustering
  • 11Competitive learning
  • 12Support vector machines
  • 13feature selection methods – Filter based techniques and wrapper methods
  • 14Principal Component Analysis
  • 15Applications of PCA
  • 16PCA
  • 17Independent component analysis
  • 18Voting
  • 19Error correcting output codes
  • 20Bagging
  • 21Boosting
  • 22Self directed learning: Self-Organizing Maps
  • 23Recurrent Neural Network
  • 24Hopfield Neural Network
  • 25Adaptive Resonance Theory
  • 26Statistical Hypothesis testing- t-test
  • 27ANOVA

References

  • Alpaydin E, “Introduction to Machine Learning”, (2e), MIT Press, 2010
  • Duda R.O, Hart P.E. and Stork D.G., “Pattern Classification”, (2e), Wiley, 2001
  • Harrington P., “Machine Learning in Action, Manning” Publications, 2012
  • Bishop C. M., “Pattern Recognition and Machine Learning”, Springer, 2007
  • Jensen R. and Shen Q. “Computational Intelligence and Feature Selection”: Rough and Fuzzy Approaches, Vol. 8, IEEE Press Series on Computational Intelligence, John Wiley and Sons, 2008
Credits Structure
3Lecture
0Tutorial
0Practical
3Total